Менеджмент - это управление организацией, функционирующей в условиях рыночной экономики.
Сущность статистического моделирования
Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы с учетом воздействий внешней среды статистические данные обрабатываются и классифицируются с использованием методов математической статистики.
Статистическое моделирование - численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели.
Статистическое моделирование - молодое и перспективное научное направление, получившее развитие в середине двадцатого века в связи с ростом возможностей вычислительной техники. Рассматриваемое научное направление имеет массу приложений в разных областях знания (биология, химия, физика, экономика и др.), что делает его изучение особенно актуальным.
Сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды, и реализации этого алгоритма с использованием программно-технических средств.
Различают две области применения метода:
) для изучения стохастических систем;
) для решения детерминированных задач.
Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погрешность уменьшается с увеличением числа испытаний (реализаций моделирующего алгоритма).
В результате статистического моделирования системы получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализаций достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы.
Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей.
Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволяющим не только прогнозировать их поведение, но и количественно оценить некоторые средние их характеристики, проявляющие определенную устойчивость. Характерные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий.
Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний (реализаций). Практически приемлемые при статистическом моделировании количественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ). Статистическое моделирование систем на ЭВМ требует формирования значений случайных величин, что реализуется с помощью датчиков (генераторов) случайных чисел.
При использовании статистического моделирования независимо от природы объекта исследования (будет ли он детерминированным или стохастическим) необходимо предварительно построить стохастическую систему, выходные характеристики которой позволяют оценить искомые.
Моделирование многофункциональное исследование, применяющееся для определения или уточнения характеристик существующих или вновь конструируемых объектов. Его основной научной задачей является воспроизводство модели на основании ее сходства с существующим объектом. Модель должна иметь сходство с оригиналом, но не быть его полным аналогом (это основное условие), так как в этом случае моделирование теряет смысл. Основное отличие модели от оригинала - способность к гибкому прогнозному изменению, не влияющему на исходные данные модели.
1 2