Менеджмент - это управление организацией, функционирующей в условиях рыночной экономики.
Методы статистического моделирования
Моделирование является логико-математическим отображением структуры и процесса функционирования планируемого объекта с целью проведения с помощью данной модели эксперимента. Сущность моделирования заключается в создании такого аналога изучаемых объектов, в котором отражены все их важнейшие с точки зрения цели исследования свойства и опущены второстепенные, малосущественные черты. https://mtatoo.ru/
Новые методы широко применяются в планировании, как правило, крупными компаниями. Они основаны на использовании экономико-математических моделей. Чтобы правильно применять эти методы в планировании, менеджеры, плановые работники должны знать области их использования и ограничения на различных этапах планирования при решении конкретных задач.
Методы моделирования включают следующие модели:
. Матричные модели. К ним относятся:
а) статические модели межотраслевого баланса. Предназначены для проведения прогнозных макроэкономических расчетов на краткосрочный период (год, квартал, месяц).
б) динамические модели межотраслевого баланса. Предназначены для расчетов развития экономики на долгосрочную перспективу, отражают процесс воспроизводства в динамике, обеспечивают увязку прогноза производства продукции (услуг) с инвестициями [11,c.22].
. Модели оптимального планирования. Базируются на экономико-математических моделях, которые состоят из целевой функции и системы ограничений.
Целевая функция описывает цель оптимизации и представляет собой зависимость показателя, по которому ведется оптимизация, от независимых переменных.
На макроуровне критерием оптимальности является максимум валового национального продукта. На микроуровне - максимум прибыли, минимум затрат, максимум выпуска продукции (услуг) и др Система ограничений отражает объективные экономические связи и зависимости и представляет собой систем)' равенств и неравенств.
. Экономико-статистические модели. Различают:
а) однофакторные, позволяют учитывать воздействие одного фактора на уровень прогнозируемого показателя;
б) многофакторные, позволяют одновременно учитывать воздействие нескольких факторов на уровень прогнозируемого показателя. Используются при прогнозировании спроса на продукцию, себестоимости, цен, прибыли и других показателей.
в) эконометрические модели, служит для описания сложных социально-экономических процессов (ВНП, доходы населения, потребление товаров и услуг и др.). 3 Имитационные модели. Суть состоит в создании модели реальной хозяйственной ситуации и манипулирование ею при различных параметрах управляемых переменных в целях обоснования развития объекта прогнозирования или планирования.
Применяются для распределения капвложений в условиях возможного риска, и других случаях.
Наиболее известны модели Джея Форрестера «Индустриальная динамика», которая охватывает весь производственно-хозяйственный процесс и модель Монте-Карло - используют при моделировании любого процесса.
.Модели принятия решений. Основываются на теории игр. Применяются в условиях неопределенности или ситуациях, когда интересы сторон не совпадают. Каждая из сторон выбирает такую стратегию действий, которая с их точки зрения обеспечивает наибольший выигрыш или наименьший проигрыш. Причем каждой из сторон ясно, что результат зависит не только от своих действий, но и от действий конкурентов.
.Модели сетевого планирования. В основу положено построение сетевого графика с изображение комплекса взаимосвязанных работ и последовательность проводимых этапов, необходимых для достижения заранее поставленной цели.
Применяются с целью сокращения сроков выполнения сложных проектов и других работ. Примером сетевых моделей планирования является метод ПЕРТ-время, ПЕРТ-затраты.
При статистическом моделировании систем одним из основных вопросов является учет стохастических воздействий. Количество случайных чисел, используемых для получения статистически устойчивой оценки характеристики процесса функционирования системы S при реализации моделирующего алгоритма на ЭВМ, колеблется в достаточно широких пределах в зависимости от класса объекта моделирования, вида оцениваемых характеристик, необходимой точности и достоверности результатов моделирования. Для метода статистического моделирования на ЭВМ характерно, что большое число операций, а соответственно и большая доля машинного времени расходуются на действия со случайными числами. Кроме того, результаты статистического моделирования существенно зависят от качества исходных (базовых) последовательностей случайных чисел. Поэтому наличие простых и экономичных способов формирования, последовательностей случайных чисел требуемого качества во многом определяет возможность практического использования машинного моделирования систем.