Менеджмент - это управление организацией, функционирующей в условиях рыночной экономики.
Стандартная и рациональная схемы статистического моделирования
Требуется определить математическое ожидание выходного сигнала X неустойчивого апериодического звена в заданный момент времени Т. Модель звена:
где g = G( t ), X(0) = A.
Данная модель звена содержит случайные параметры с равномерным законом распределения в заданных интервалах.
Допустимая абсолютная погрешность результата: εдоп. = 0,01.
Задачу решить тремя способами:
· Используя стандартную схему статического моделирования;
· Используя рациональную схему статистического моделирования с применением метода расслоенной выборки;
· Аналитически.
Результаты аналитического решения использовать для проверки результатов статистического моделирования и для обоснования построения рациональной схемы моделирования.
При использовании рациональной схемы статистического моделирования обеспечить снижение требуемого количества опытов по сравнению со стандартной схемой не менее чем в 10 раз.
Исходные данные (вариант 2-2):
G = 1 ÷ 1.4,
a = 0.6 ÷ 0.8,
T = 1.3,
A = 1,
k = 1.2.
Аналитическое решение
статистический моделирование математический апериодический
Решим дифференциальное уравнение вида[1]:
(1)
где g = G(t),
X(0) = A.
Сначала найдем решение соответствующего однородного дифференциального уравнения:
Подставим полученное решение однородного дифференциального уравнения в (1):
Найдем С1 из условия X(0) = A:
В результате имеем:
Решение исходного дифференциального уравнения (1) имеет вид:
(2)
где g - случайный параметр, распределенный по равномерному закону в интервале [1;1.4],
a - случайный параметр, распределенный по равномерному закону в интервале [0.6;0.8],
Для Т=1.3 с учетом статистической независимости k и g определим искомую характеристику:
где - искомое математическое ожидание.
С учетом (1) находим :
Таким образом,
Определим дисперсию :
, (3)
где - дисперсия выходного сигнала.
Введем обозначение: и найдем :
(4)
Рассчитаем слагаемые, входящие в (4):
;
Таким образом, 21.77.
Подставив полученные значения в (3), определим дисперсию выходного сигнала:
С учетом известной дисперсии оценим необходимое количество опытов с погрешностью :
,
где - необходимое количество опытов.
Значение параметра зависит от доверительной вероятности . Примем Pд=0,997 и aд=3. Подставив значения параметров в (5), получим:
опытов.
Все перечисленные расчеты производились в математическом пакете MathCAD [2], приводятся в Приложении А.
- Стандартная схема статистического моделирования
- Рациональная схема статистического моделирования
- Блок-схема итерационного алгоритма метода расслоенной выборки.